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innovation and thus symbolizes our constant striving for
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unravel the underlying mechanisms that drive and
manifest the various leukemias and lymphomas.
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Foreword

Even though the last two years have been dominated by the pandemic, we have kept science firmly in our
mind. Providing the best possible care for our oncology patients remains our heartfelt mission. Scientifically,
we have continued to focus on the evaluation of our 5,000 genome and transcriptome datasets (WGS/WTS)
and the application of artificial intelligence (AI). While the WGS/WTS data contributes to the biological and
genetic understanding of leukemias and lymphomas, the implementation of AI-based methods aims to
optimize our diagnostic workflows.

One of the basic requirements for reliable and reproducible scientific research is the generation of
standardized, high-quality data. This is especially true for next-generation sequencing (NGS) data. Over the
years we have sequenced more than 5,000 human genomes, 4,700 whole transcriptomes, and 41,000 NGS
gene panels, carefully optimizing every step of the workflows to meet our high quality standards and
achieve a high degree of automation. This year we also obtained the CAP accreditation for our various
diagnostic workflows and launched a new sequencing service (MLL SEQ) to offer our sequencing experience
and capacities to everyone. We also introduced the 4-tier system for the classification of sequencing
variants.

Here, we have learned how unique and therefore scientifically valuable our database of sequencing variants
and their frequencies of occurrence are. Our knowledge in this area is further expanded by the extensive
analysis of our WGS & WTS data. Excitingly, the explorative and comprehensive analysis of our genomic and
transcriptomic data led to the discovery of new biomarkers and subtypes for ALL and NK cell neoplasms: the
oncogenic role of BCL11B in ALL and CCL22 mutations in NK cell neoplasms. Two exciting projects where we
benefited greatly from the collaboration with St. Judes and Charles Mullighan's group. Without their know-
how and the data from functional assays, such publications would not have been possible.

Over time, we have accumulated large data sets that allow us to train machine learning algorithms and to
implement AI-based methodologies for various applications. In cytogenetics, for example, the routine
diagnostic workflow already benefits from AI-based support for automatic karyotyping. The method was
developed in close collaboration with MetaSystems. Moreover, collaborative projects with AWS in
morphology for blood differentials and in immunophenotyping for diagnosing main entities of hematologic
malignancies are nearly completed and are close to validation for the routine setting. Prognostic and
mutation data of our large MDS cohort data also contributed to the training of a personalized MDS risk
stratification model that outperformed current risk stratification scores.

Unfortunately, we could not welcome any guest scientist (supported by the Torsten Haferlach Leukemia
Foundation) at the MLL in the last year. However, the time was well spent to wrap up the analyses and data
evaluation of their ongoing projects in a number of publications. Also, collaborations with large consortia like
Harmony or ERIC did not stand still and made significant progress. In the field of Data Science, we have
entered into a mutual scientific support with the Helmholtz Zentrum München to contribute to the education
of young scientists here as well.

Despite pandemic circumstances, we continued to create knowledge through scientific research and made it
accessible with currently 57 per-reviewed publications in 2021. Hence, we will start the new scientific year
with joy, motivation and dedication.
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Dr. rer. nat. Manja Meggendorfer, MBA,
Head of Research & Development
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Standardization and rigorous quality control are key for 
diagnostic accuracy and reliable research

Going beyond

WES
Methyl-Seq

WGS

WTS

Targeted
Seq

Data 
preprocessing

Data 
analysis

Data 
visualization

The 5,000 genome project allowed us to
carefully optimize and automate every
step of our NGS workflow, strengthened
our expertise to sequence at the most
qualitative level in high throughput with
shortest turn-around times in a clinical
setting. With MLL SEQ we are now
offering our sequencing experience and
capacities to everyone (mllseq.com/).
However, our portfolio doesn’t end with
sequencing; we also offer data analysis
and visualization services.

RNA 
Exome

 Fast processing times
 High quality
 Flexibility

What we offer
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For more than 10 years, the MLL has ISO 15189 accreditation for all assays. Now in
2021, MLL Dx, MLL's affiliate, has been peer-inspected and successfully accredited by
the College of American Pathologists (CAP). MLL Dx was founded in 2017 as a sister
company of MLL, providing comprehensive diagnostics of hematological malignancies
for international patients and in clinical studies. By combining the services and know-
ledge of MLL and MLL Dx, applying state-of-the-art methods, and adhering to a strict
quality management plan, we aim to provide the best possible diagnosis for every
patient. The CAP’s laboratory accreditation program, with its annually updated
checklists, has helped us to further optimize our workflows to ensure high accuracy
and standardization of the various assays that form the basis for a high-quality
laboratory. In addition to patient diagnostics, we are always interested in learning
more about the characteristics of different disease subgroups and advancing our
research. The CAP program has encouraged us to re-evaluate our established quality
standards to bring them into line with international practices and to further expand
our use of various controls to make our assays even more robust. Moreover, the CAP
program did not only lead to further improvements of our wet-lab processes but also
provided guidance to streamline our analysis pipelines, coding standards and guide-
lines, as well as the documentation procedure even more.

Rapid clinical
decision support

Increase sample 
throughput

Reduce errors

Increase standardization
& reproducibility

Increase level
of automation

Figure 1: Overview of our aims for continuous workflow optimization.

High-quality data is a basic requirement for reliable and reproducible scientific research, which allows us to
further explore the genetic characteristics of leukemias and lymphomas. Due to our high quality standards,
we can guarantee the accuracy of the produced data and are confident in sharing our data for external
scientific projects through various fruitful collaborations.

We are continuously optimizing our
workflows with existing resources and
new technologies to improve their
efficiency and the quality of the
results. We always intent to auto-
mate as many steps of a workflow as
possible to increase our efficiency,
reproducibility of results, as well as
prevent individual errors and reduce
manual bias (Fig. 1). Only re-
producible and homogenous results
allow the comparison of different
processing batches and the data
integration from various sources.



Introduction of the 4-tier system for the classification of 
sequence variants

On the basis of a combined effort by various working groups a 4-tiered system
to categorize somatic sequence variations based on their clinical significances
has been proposed, which we adapted to central questions in hematological
diagnostics:

1) Can a diagnosis, prognosis or therapy be currently derived?
2) Does the change prove the clonality of hematopoiesis?
3) Can the change be used as a progression marker?

Therefore, we integrated our internal variant data, public databases and in
silico predictions into a classification that can support clinical decisions.
Cancer genomics is a rapidly evolving field and hence we reevaluate the
clinical significance of any variant in therapy, diagnosis, or prognosis
periodically.

Sequence alterations have classically been divided into two categories:
"mutation" and "polymorphism", with only the former considered relevant or
pathogenic. However, with the start of large-scale sequencing projects for rare
diseases and various cancers, as well as the increase of available genetic profiles
of healthy individuals, a broad spectrum between clearly disease-associated
pathogenic alterations and nonpathogenic polymorphisms has been revealed. In
the case of BRAF, for example, the well known V600E alteration allows the use of
targeted therapies but this doesn't apply to atypical and less well studied
alterations in the same gene. In the last years, genomic sequence data have been
produced in an exponential way but the knowledge regarding the clinical
interpretation and functional analysis of detected variants, doesn’t grow equally
fast. Hence, in the case of missing reference data a refined distinction might be
necessary.

A large proportion of RUNX1 or TP53 alterations belong to this category, as
they are associated with poor prognosis in many entities. Other examples in
this category include alterations that allow targeted therapy, cause resistance
to such therapy, or allow diagnosis according to WHO. However, the
significance for diagnosis, prognosis, and therapy must always be evaluated
in the overall context of all findings obtained, and the respective disease-
specific interpretation of the molecular genetic findings must be considered.

Even though compared to tier 1 the data status is often weaker, tier 2
alterations can guide the diagnostic process and prove the clonality of
hematopoiesis. Tier 2 alterations can also be used as progression markers.
It’s important to consider the overall context for the interpretation,
including additional findings. The significance of tier 2 alterations in genes,
for which mainly hotspot mutations are known, is unclear.

Congenital alterations are present in healthy and malignant cells. In
order to reliably differentiate between germ line and somatic
variants, the sequencing of a matching control (e.g. buccal swab,
fingernail, etc.) is necessary. Only acquired variants are suitable as
progression markers, since they should no longer be present after
successful therapy.

They are by far the most frequent alterations in our daily life,
are documented internally but not listed in the report.

Positive/Tier 1

• Known pathogenic/very 
likely pathogenic

• relevant to diagnosis, 
prognosis, and/or 
therapy

Positive/Tier 2

• likely somatic alteration
• no definite statement on 

pathogenicity can be made 
at the time of analysis

Variant/Tier 3

• currently unclear whether this is a 
rare congenital germ line alteration 
or an acquired somatic alteration

Polymorphism/Tier 4

• Benign/likely benign
• No known disease association
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Extension of the routine molecular genetics workflow to 
detect CNV and CN-LOH events

WGS data was used to reveal additional associa-
tions between high VAFs of various genes and CN-
LOH events (Fig. 5).

Walter et al. 2021, Blood, 
https://doi.org/10.1182/blood-2021-152195

By using a CNV spike-in panel, TES adds
additional diagnostic and prognostic informa-
tion by enabling simultaneous detection of
selected gene mutations and genome-wide
CNVs, as well as CN-LOH, without increase in
sequencing costs and turn-around times.

Figure 5: Schematic overview of the associations between CN-
LOH events and high VAFs of various genes and their
occurrence: red: only myeloid neoplasms, blue: only lymphoid
neoplasms, purple: myeloid and lymphoid neoplasms.

Figure 4: Examplary plots for patients with CN-LOH in 4q
(left), 7q (middle), and 2p, 4q and 6p (right).

A detailed analysis of 1196 patients, sent to the
MLL between 04/2021–07/2021 for diagnostic
work-up, revealed that ~10% of the patients harbor
a CN-LOH event without any association to age or
gender but a slightly higher incidence in myeloid
compared to lymphoid neoplasms. CN-LOH
occurred most frequently in 4q, 7q, 9p and 11q. 4q
CN-LOH co-occurred with high variant allele
frequencies (VAF) of TET2. 7q CN-LOH occurred
nearly exclusively in myeloid neoplasms (95%) and
was associated with high VAFs in EZH2 and CUX1
variants. 9p CN-LOH led to JAK2V617F homo-
zygosity and 11q CN-LOH occurred more often in
myeloid than lymphoid neoplasms (79% vs 21%),
mostly associated with CBL, KMT2A-PTD and ATM.

Figure 3: Simplified illustration of the effect of CN-LOH events.

Chromosome banding analysis (CBA) is the current
gold standard for the detection of chromosomal
aberrations. In recent years, it has been shown that
broad next-generation sequencing (NGS) assays,
such as whole exome sequencing (WES) and whole
genome sequencing (WGS), are valid alternatives
to CBA. However, both assays are still comparably
expensive, hampering their broad application in
routine diagnostics of hematological malignancies,
for now. Our routine molecular genetics workflow
applies target enrichment sequencing (TES) for
molecular profiling of patients with hematologic
neoplasms. The hybridization and capture assay is
highly flexible due to the variety of available gene
panels. Since April 2021, we extended the workflow
to simultaneously assess copy number variations
(CNV) and copy-neutral loss-of-heterozygosity
(CN-LOH) by adding a CNV spike-in panel (Fig. 1).

The xGen human CNV backbone panel (Integrated
DNA Technologies) contains >9,000 oligonucleotide
probes that span the entire genome with an
approximate distance of ~0.34 Mb. The obtained
coverage and variant calling data is analyzed with
the CNVkit software toolkit (Talevich et al. 2016,
https://doi.org/10.1371/journal.pcbi.1004873). The
coverage tracks are normalized by a reference
profile, compiled from >50 samples with a normal
karyotype. The panel allows the detection of chro-
mosome/-arm gains and losses as well as most
derivative chromosomes (Fig. 2).

Figure 1: Schematic overview of the routine target enrichment
workflow to detect CNV and CN-LOH events.

Figure 2: Examplary plots for patients with monosomy 7 (left),
trisomy 8 (middle), and isochromosome 7 (right).

Copy-neutral loss-of-heterozygosity (CN-LOH) -
not detectable by CBA - is gaining importance as
an additional prognostic factor and can either
cause the duplication of an activating mutation in
an oncogene, the deletion of a tumor suppressor
gene or the gain/loss of specific methylated
regions, influencing gene expression (Fig. 3).

Sequencing & 
data preprocessing

Hybridization 
capture

Data analysis & 
evaluation

CNVkit

Various gene
panels

Human
ID panel

CNV spike-
in panel
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WGS & WTS in leukemia: reliable tools for diagnostics?

Motivation
The analysis of the tumor genome has undergone revolutionary developments over the past decade, with
whole genome sequencing (WGS) providing an unprecedented insight into cancer biology and pathogenesis.
In order to complete the molecular picture, whole transcriptome sequencing (WTS) has been used and is
often applied to subtype classification in acute lymphoblastic leukemia patients. Comprehensive WGS and
WTS data may potentially impact diagnostics, prognostication and therapy selection in the near future.
However, there are still some pitfalls to recognize and challenges to overcome before WGS & WTS can
advance clinical diagnostics and patient care.

Pre-analytical considerations
• the amount of DNA input varies depending on the applied library

preparation protocol
 PCR-free methods require >1 µg of DNA input
 Amplification-based methods require 10 ng-100 ng DNA

• RNA input for WTS ranges from ~10 pg to ~300 ng
• only high quality nucleic acids will result in clinically useful WGS & WTS

results
 DNA quality is stable for samples stored at room temperature but

extended storage time will result in reduced DNA amounts
 RNA is extremely labile and degrades fast in blood samples stored

at room temperature
• the right control sample has to be chosen with care

 buccal swap or sorted T-cells are commonly used as controls in
haematology to reliably differentiate between germ line and
somatic variants, but these tissues yield only low amounts of
high-quality DNA (+ minor contamination)

 due to the relative nature of RNA-Seq the choice of an adequate
control and normalization method is of prime importance

• implementation of quality checks and standardization of the library prep
workflows are essential to reduce manual bias and to increase
homogeneity and reproducibility of WGS & WTS results

• selection of a solid indexing strategy (e.g. unique dual indices) for efficient
multiplex sequencing

• selection of the adequate sequencing settings, depending on the insert
size of the library fragments

• the sequencing depth directly influences the sensitivity of the results
• a fast and secure computational infrastructure has to be established to

safely store the data and to allow a fast computation

Current challenges
• especially for WGS, limited sensitivity due to a trade-off

between sequencing depth and costs
• the coverage is not uniformly distributed over the whole

genome, with significantly lower coverage in GC-rich and
repetitive regions

• comparably long turn-around times for WGS & WTS workflows
• limited knowledge of clinically relevant genomic variants
• despite the reduction in sequencing costs, WGS & WTS

are still comparably expensive

Meggendorfer et al. 2020, 
Best Practice & Research Clinical Haematology, 
https://doi.org/10.1016/j.beha.2020.101190

Meggendorfer et al. 2021, 
Seminars in Cancer Biology,
https://doi.org/10.1016/j.semcancer.2021.06.009

Walter et al. 2020, 
Seminars in Cancer Biology,
https://doi.org/10.1016/j.semcancer.2020.10.015

RNA

A260/280 > 2.0

A260/230 
> 2.0

RIN > 5

Conc. > 3 ng/µl

DNA

A260/280 > 1.8

Conc. > 5 ng/µl

WGS
WTS

150bp

100bp

Sample quality

Indexing

Sequencing settings

Unique 
dual index
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Whole genome sequencing through the looking glass

It took 14 years to sequence the first human genome, involving thousands of scientists all over the world and
ragging up the enormous sum of 3 billion dollars. The scientific description of the finished human genome
sequence was finally presented in October 2004. Since then many things have changed. With the
introduction of next-generation sequencing, the costs for sequencing a single human genome dropped
rapidly over the years to ~$1000. After a brief period of stagnation, the costs per genome have recently
fallen below the $100 mark. Hence, we have already come a long way in making whole genome sequencing
(WGS) affordable for healthcare. However, the results also have to be rapidly available in order to maintain
short turnaround times, providing the patient with a timely diagnosis. Starting in 2017, we have sequenced
more than 5,000 genomes, carefully improving and optimizing every step of the workflow. So, how are
human genomes sequenced at the MLL?

Genomes sequenced
since 2019

Petabyte of 
sequencing data

Median turn-around
time (days)

Computation time to analyze
a single WGS sample (hrs)

As soon as a bone marrow biopsy
or peripheral blood sample arrives
at the MLL, the samples are pre-
processed (cell lysis) and stored.
The DNA is then extracted using
the MagNA Pure 96 instrument.
WGS libraries are prepared from
1µg of DNA with the TruSeq PCR
free library prep kit within the
next day(s). The WGS library
preparation (Fig. 1) runs fully
automated on the Hamilton NGS
STAR system.

Every WGS library is rigorously checked for different
quality parameters and the samples are then
sequenced on the NovaSeq 6000 system, generating
150bp paired-end reads. Depending on the used flow
cell, the sequencing itself takes between 25 and 48
hours. For the detection of somatic mutations and
small clones, the WGS samples are sequenced with an
average coverage of 90x. However, the sensitivity for
variant detection is still lower compared to targeted
sequencing. The sequencing data is directly streamed
into our private instance of the Amazon Web Services
(AWS) cloud and preprocessed in the BaseSpace
sequence hub (Fig. 2).

Most of the times no sample specific normal tissue is
available and a so-called Tumor/unmatched normal
workflow is used for variant calling to reduce technical
artefacts and germ line calls. The obtained calls are further
analyzed and filtered by in-house pipelines (SNV, SV). Copy
number variations are assessed with GATK4, applying a
panel of normals (WGS data of patients with a normal
karyotype as reported by cytogenetics) for the normal-
ization of the profiles. Copy-neutral loss of heterozygosity is
estimated applying Hadoop software. The combined data is
analyzed for patient-specific reports, listing the identified
aberrations and potential implications.

Figure 1: Schematic overview of the WGS library preparation workflows

Figure 2: Schematic overview of the WGS data pre-processing.

Figure 3: Schematic overview of the different data types
that are analyzed from WGS samples.

7-8

2.161

38-45

>3.4
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A comprehensive yet focused analysis of hematological
neoplasms - the clinical cancer genome and transcriptome

The human genome consists of about 3 billion letters and all human beings are 99.9% identical in
their genetic makeup. Important clues about the predisposition and causes of various diseases
can be found in the remaining 0.1% of differences. With the decrease in sequencing costs whole
genome sequencing becomes feasible opening the way to comprehensively access a patient’s
genetic profile. However, the clinical evaluation of the genome focuses solely on acquired
mutations and the manual annotation and interpretation of identified genetic variants will be
restricted to genomic regions associated with the suspected diagnosis to reduce interpretation
complexity and to facilitate comprehensive reporting in a clinically-relevant timeframe. Genetic
variants identified outside the predefined regions of interest will be ignored and won’t be included
in the manual evaluation process, effectively eliminating the possibility of incidental findings.

Solving Riddles Through Sequencing (SIRIUS)
ClinicalTrials.gov Identifier: NCT05046444

For ~90% of all patients with suspected hematologic malig-
nancies a swift diagnosis can be made by the application
of standard techniques. The other 10% remain a challenge.
The objective of this trial is to test whether WGS & WTS can
surpass the current gold standard regarding diagnostic
precision and routine reliability for these challenging cases.

For the evaluation of the somatic mutation profile we currently consider 121 genes with established
associations to hematological malignancies. For these genes only protein-altering and splice-site
variants that passed the quality filtering by the variant caller are considered. Furthermore, each
variant is queried against the gnomAD database and variants with a global population frequency
> 0.1% are excluded. For indels, additional ‘non-PASS’ variants are considered if they have a
variant allele frequency (VAF) ≥ 0.1 and ≥ 5 read support. Variant classification is performed
following a 4-tier system (p. 7) and the filtered and annotated list of variants is reported. Structural
variants and copy number variations are assessed genome-wide, as currently done by chromo-
some banding analysis. Artefact filtering is performed based on our 5,000 in-house genome data
set. A patient’s transcriptome is analyzed for the occurrence of fusion transcripts and specific
gene expression signatures or single gene expressions with diagnostic or prognostic value for
different leukemias and lymphomas. The expression values are normalized and compared to either
a control group of healthy individuals or within a disease entity. Detected fusion transcripts are
queried against public databases and only transcripts that have not been found in healthy indi-
viduals and are reported in public databases with relevant disease/subtype associations are
reported.

Structural
variants (SV)

Copy number
variants (CNV)

Single nucleotide
variant (SNV) + InDels
in 121 genes

Integrated WGS 
report

Filtering for
regions of interest

Variant calling for
whole genome data

Genome-wide
assessment

Specific gene
expression profiling

Fusion 
transcripts

Mapping & comparison to
in-house reference data

Querying of public and
in-house databases

Querying of public and
in-house databases

c.2098A>G Variant classification

WTS report

Whole
transcriptome data

Whole transcriptome

Filtering for genes 
of interest
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Figure 1: Pictographic overview of the clinical genome and transcriptome

ACTA
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15    17

Comparison of:
 Results

 Diagnosis
 Prognosis
 Therapy

 Turnaround-times
 Costs

MLL standard-of-care

WGS & WTS

12



More data, more clinically relevant information?

Variant interpretation of protein altering mutations
was performed by considering ClinVar, Cosmic,
functional impact predictors and a population
frequency in gnomAD ≤0.00005. Variants with no or
discordant information were declared as variants of
uncertain significance (VUS). Jumping the size from
just 12 analyzed genes (NCCN) to the whole exome,
the percentage of patients carrying at least one
mutation increased from 81% to 100% and the median
number of mutations per patient increased from 2 to
10 (Fig. 2). For the smaller panels a slightly higher
number of mutations could be detected in male
patients (NCCN gene panel: 63/234, 27% vs. 55/354,
16%; p=0.001; 34 McClure gene panel: 52/234, 22%
vs. 44/354, 12%; p=0.002).

Increasing the size of the genomic region of interest naturally increases the probability to encounter so-
called 'incidental findings': the detection of clinically relevant genomic variants unrelated to the current
diagnostic question. But do we also gain additional, clinically relevant information in relation to the actual
diagnostic question by increasing the size of the sequenced region? We addressed this question by
analyzing the sequencing data (deep sequencing & WGS) of 588 patients diagnosed with MDS by
cytomorphology and cytogenetics according to the WHO classification. 85% of MDS patients carry at least
one mutation at diagnosis but the median number of mutations per patient is low. So how much genetic
information can be gained by increasing the number of analyzed genes?

The targeted sequencing and
WGS data was analyzed for 2
and 4 virtual gene panels
respectively: the 12 genes as
given in the MDS NCCN
guidelines with a incidence
>5% (Version 2.2020), the 34
gene panel summarized in
McClure et al. 2018, the 723
COSMIC cancer gene census
(CCGC, v91) panel and finally
the exome (Fig. 1).

Figure 3: Overview of gained variants per panel. (A) Number of gained variants (purple) for each panel transition in comparison to the detected variants
from the previous panel(s) (light blue). (B) Relative abundance of recurrent mutations among the gained mutations per panel.

Meggendorfer et al. 2020, Blood, 
https://doi.org/10.1182/blood-2020-139274

Figure 2: Number of patients that harbor at least one mutation (light
blue, lavender) or at least one mutation + VUS (blue, purple) per panel.

As can be seen in Fig. 3A, the number of detected
mutations decreased while the number of VUS rose
with increasing panel size. This is most evident in the
exome dataset with a remarkable increase of
20,540 VUS detected. Here, all patients harbored at
least one mutation but most of the gene mutations
occurred in only one individual (Fig. 3B).

As demonstrated by this study, for MDS patients,
a large gene panel shows only small gain of
clinically relevant information but many additional
VUS. Therefore, for MDS, the choice of a small but
well selected gene panel is preferable to large
sequencing efforts to obtain the same amount of
information with less cost and evaluation time.

Meggendorfer et al. 2021,  EHA Library, 
06/09/21; 325650; EP892

A) B)NCCN McClure CCGC Exome 100%

75%

50%

25%

0%

Mutated Recurrently mutated

Figure 1: Schematic overview of the cohort, applied in silico panels and the sequencing depth of the
respective methods (A), as well as the gene overlap between the different panels (B).

Exome
(n = 19,433)

CCGC
(n = 723)

McClure
(n = 34)

NCCN
(n = 12)

A) B)
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WGS & WTS allow the identification of key genetic
subtypes in acute lymphoblastic leukemia

Considering the clinical and genetic characteristics,
acute lymphoblastic leukemia (ALL) is a rather hetero-
geneous hematological neoplasm for which current
standard diagnostics require various analyses encom-
passing morphology, immunophenotyping, cytogenet-
ics, and molecular analysis of gene fusions and
mutations. Even with this plethora of methods, it is not
possible to comprehensively cover all subtypes de-
scribed so far. Especially in recent years, several
subtypes have been identified that are characterized by
specific molecular genetic markers that are best
detected by larger assays such as WGS and/or WTS.
Hence, we explored the clinical utility of WTS for the
genetic characterization of ALL and subsequent patient
stratification following the classification tree in Figure 1.

In the initial classification step we used the expression levels of
described marker genes to reliably distinguish between BCP-ALL
and T-ALL samples. Subsequently, the BCP-ALL samples were
further subclassified by the identification of recurrent risk-
stratifying gene fusions (Fig. 2). We used three different fusion
callers (Arriba, STAR-Fusion, Manta) to detect fusion transcript
candidates, relying only on those identified by at least two callers
and not detected in control samples. Compared to the standard
methods, 97% of recurrent risk-stratifying fusions could be
identified by WTS. Additionally, read-through fusions indicative of
CDKN2A and RB1 gene deletions were recurrently detected in the
cohort, along with 57 putative novel fusions with yet untouched
diagnostic potentials. The CNVkit toolkit was used to identify
patients with high hyperdiploidy or low hypo-diploidy/near-
triploidy, correctly identifying 17 (94%) low hypodiploid/near-
triploid and 12 (80%) high hyperdiploid cases. 103 BCP-ALL
samples of the cohort had no established abnormalities and were
further referred to as BCP-ALL ‘other’.

Walter et al. 2021, BMC Cancer,
https://doi.org/10.1186/s12885-021-08635-5

However, the beauty of broad assays such as WGS
and WTS is that they allow to go beyond the standard
analytical spectrum to stratify patients even further.
Thus, we used the gene expression profile to classify
BCP-ALL ‘other’ cases into the ‘BCR::ABL1 like’ and
‘non BCR::ABL1 like’ groups. We also identified cases
harboring other translocations - beside the subtype
defining rearrangements - involving ZNF384, HLF, and
NUTM1 that were all assigned to the ‘non BCR::ABL1
like’ group and, hence, could be further subclassified
based on these genetic alterations (Fig. 3). A group of
samples with a homogenous gene expression profile
distinct from the others could be assigned to the newly
identified subgroup of BCP-ALLs with DUX4 rearrange-
ments. WGS data allowed the identification of cases
with a) a complex karyotype and TP53 mutations, b) a
near haploid karyotype, c) PAX5 mutations, d) MYC re-
arrangements and e) rearrangements involving IGH
and members of the CEBP family.

Figure 1: Classification tree. Design of the multi-method classifica-
tion approach and distribution of the patients.

Figure 2: Illustration of identified recurrent fusion
transcripts. Red - canonical, blue - known, purple -
novel. *indicate deletion/read-through events, ^
inversions. The line width is proportional to the fusion
transcript frequency in the cohort.

Figure 3: Genetic subtyping of BCP “other” ALL by thorough WGS
and WTS data evaluation.

Haferlach et al. 2021, Blood,
https://doi.org/10.1182/blood-2021-150260

Hence, WTS can be used to classify ALL patients
with a single assay and is superior to conven-
tional methods in cases which lack entity-defining
genetic abnormalities. The analysis can be further
enriched by the integration of WGS data, adding
relevant information for prognostication and
therapy selection for subsets of patients.
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Research at the MLL – everyone is a part of the whole

„The constant exchange between our various departments and the close
cooperation between the individual specialists makes comprehensive and high-
quality research work possible.“

– Dr. Manja Meggendorfer

Medical doctors

Lab technicians

Scientists/
project managers

Software 
developer

Medical writers

Bioinformaticians

It has long been recognized that successful medical innovations require a team of experts from multiple
disciplines. However, most of the times the different analyses and evaluations are performed in parallel and
are never fully integrated (Gohar et al. 2019, https://doi.org/10.3389/fmed.2019.00035). Being aware of
this fact and bringing together experts from different fields under one roof, we try to work as closely as
possible to achieve the best possible outcome for our patients and to advance our research in a cohesive
manner.
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Research highlight: Enhancer hijacking drives oncogenic
BCL11B expression in lineage-ambiguous leukemia

Meijerink 2021, Blood, 
https://doi.org/10.1182/blood.2021011856

Montefiori et al. 2021, Cancer Discovery, 
https://doi.org/10.1158/2159-8290.CD-21-0145

BCL11B a locus with multiple functions

BCL11B is an important oncogene for early human acute leukemia with ambiguous lineage. The BCL11B
locus can drive a variety of immature leukemias through different pathogenic mechanisms:

1) Recurrent chromosomal rearrangements between BCL11B and various oncogens (e.g. TLX3), leading
to BCL11B enhancer hijacking that drives ectopic expression of the oncogenes.

2) The occurrence of a t(2;14)(q22;q32) translocation resulting in an in-frame ZEB2-BCL11B fusion
transcript (often in combination with activating FLT3 mutations) and aberrant BCL11B expression in
early progenitor cells.

3) Repositioning of different regulatory sequences upstream or downstream of BCL11B resulting in high
BCL11B expression (=BCL11B-activated acute leukemia) and a unique expression profile (incl
JAK/STAT signature) further characterized by FLT3 mutations in the absence of NOTCH1-activating
mutations.

Acute leukemias of ambiguous lineage (ALAL) are
notoriously challenging to classify and lack clear
subtype-defining genomic alterations and appropri-
ate treatment strategies. ALALs either show limited
lineage differentiation or exhibit immunophenotypic
features of multiple lineages and are often charac-
terized by various gene mutations affecting myeloid
maturation, kinase signaling, and chromatin
modification among others. However, the oncogenic
drivers of the different types of ALALs remain poorly
understood. Montefiori et al. identified diverse, pre-
dominantly noncoding structural variants (SV) driv-
ing enhancer hijacking events leading to aberrant
BCL11B expression and a specific gene expression
signature in hematopoietic progenitor cells, defining
a subtype of lineage-ambiguous leukemia.

The initial analysis of transcriptional profiles of 2,574
patient samples showed that various types of leuke-
mias (Fig. 1B) with stem/myeloid/T-cell phenotypes
clustered together, defying immunophenotypic and
diagnostic boundaries (Fig. 1A).

Figure 1: BCL11B deregulation in lineage-ambiguous leukemia. A) Exem-
plary representation of the specific gene expression profile of BCL11B
deregulated cases loosely based on Montefiori et al. B) Relative frequency
of the various types of ALAL within the BCL11B group. MPAL: mixed
phenotype acute leukemia; ETP-ALL: early T-cell precursor acute
lymphoblastic leukemia; AML: acute myeloid leukemia; AUL: acute
undifferentiated leukemia; T-ALL: T-cell acute lymphoblastic leukaemia
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The unifying feature of these 61 cases? Monoallelic
expression of BCL11B, suggesting BCL11B dereg-
ulation as the driver event. Samples within the
BCL11B group were characterized by high FLT3
expression (Fig. 2) and enriched for either an
activating internal tandem duplication (ITD) or
D835Y mutation in FLT3, detected in 49/61 (80%)
of the cases.
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Figure 2: FLT3 expression in various subtypes of T-ALLs (MLL data).

To determine the genomic mechanism for BCL11B
deregulation, samples from the BCL11B group were
subjected to HiChiP analysis, which revealed that
the identified noncoding SVs led to ectopic chro-
matin interactions between BCL11B and various
super-enhancers that were particularly active in
uncommitted normal hematopoietic cells. More-
over, a new mode of oncogenic enhancer forma-
tion caused by tandem amplification (>15x) of an
otherwise inconspicuous noncoding element in cis
with BCL11B (= BCL11B enhancer tandem amplify-
cation, or BETA) was identified. Subsequent single-
cell analysis supported the hypothesis that BCL11B
drives, or reinforces, a stem cell gene expression
program in BCL11B-group leukemia, possibly
reflecting the cellular origin of this disease.

In summary, BCL11B can act as an oncogene
when it’s aberrantly activated in hematopoi-
etic stem/progenitor cells. This contrasts with
its well-known tumor suppressor roles in T-ALL.
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FISH and WGS in newly diagnosed and
relapsed/refractory multiple myeloma –
WGS will affect future treatment decisions

Introduction
Multiple myeloma (MM) is a malignant plasma cell
disorder with broadly varying clinical symptoms
and outcome for which the diagnosis and risk
stratification is mainly based on Fluorescence in
situ hybridization (FISH). However, different studies
have shown the clinical value and potential of
WGS to gain new insights into MM genetics.

Patients & Methods
Parallel analysis of 100 patients (pts) by WGS
FISH.

Results
• Comparison of FISH and WGS results showed

100% concordance for recurrent SVs: t(11;14) in
29%, t(4;14) in 17%, and t(14;16) in 5%

• Due to heterogeneous breakpoints FISH is less
reliable for the detection of MYC rearrange-
ments than WGS (57% vs. 95%)

• Rare IGH rearrangements could be completely
resolved by WGS with a higher detection rate
compared to FISH (11 pts vs. 8 pts)

• WGS detected 95% of copy number variations
identified by CBA/FISH. Missed aberrations
detected by FISH were all identified in small
subclones with a median clone size of 10%

• WGS revealed additional clinically relevant
information such as TP53 and 1p deletions not
detected by FISH, as well as potential drug
targets like BRAF and CRBN mutations

Conclusion
WGS is superior to FISH for the identification of
biallelic events and rearrangements with varying
breakpoints and rare partner genes. Moreover,
WGS provides a comprehensive assessment of the
genetic profile for patients diagnosed with MM.
However, the assay is limited in the detection of
small clones (<15%) and variant ploidy levels. Here,
as well as for patients with less than 10% plasma
cell infiltration of the bone marrow, FISH is still the
gold standard.

Manuscript speed dating – get the gist of a manuscript
in less than 3 minutes

Truger et al. 2021, Blood, 
https://bit.ly/3GUlWFu

Truger et al. 2021, Blood Advances, 
https://doi.org/10.1182/bloodadvances.2021004418

Single- and double-hit events in genes
encoding immune targets before and after
T cell-engaging antibody therapy in MM

Introduction
Novel T cell–engaging therapies such as chimeric
antigen receptor (CAR) T cells or bispecific anti-
bodies (BsAb) have entered the treatment for
multiple myeloma (MM) and show exceptionally
high response rates in relapsed/refractory (RR)
patients. However, patients still continue to relapse
due to various mechanisms of resistance to T cell–
based therapies.

Patients & Methods
WGS and WTS analysis of a 56-year-old patient
with CD3xBCMA BsAb as well as 100 patients with
MM.

Results
• Detection of a homozygous deletion at 16p13.13

leading to antigen loss and subsequent failure
of BCMA therapy in a 56-year-old patient

• Detection of heterozygous deletions in immune-
therapy targets in 30% of T cell immune-
therapy-naïve patients

• 15/21 targets were encoded on chromosomes
involved in hyperdiploid karyotypes or on
chromosome 1q and were consequently
amplified in ~50% of these patients

• Single-nucleotide variants occurred only with
low frequencies in genes encoding for immune
targets

• No changes in gene expression could be
detected for gains, heterozygous deletions, and
SNVs in immunotherapy targets. Only biallelic
aberrations resulted in a loss of expression of
the respective gene

Conclusion
The study supports the use of immunotherapies
earlier in the disease process, because the
frequency of deletions and mutations in genes
encoding immunotherapy targets was lower in
patients with newly diagnosed MM vs those with
relapsed/refractory MM.
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Mutational patterns and their correlation
to CHIP-related mutations and age in
hematological malignancies

Introduction
Molecular mutations play crucial roles in the
pathogenesis and classification of many types of
leukemias and lymphomas but the mutational
landscapes of different hematological cancers and
their relation to clonal hematopoiesis of
indeterminate potential (CHIP) and age have not
been evaluated comprehensively.

Patients & Methods
Mutational analysis of whole genome sequencing
data from 3096 patients diagnosed with 28
different hematological malignancies.

Results
• Cases with at least one mutation in CHIP genes

(DNMT3A, TET2, ASXL1) were characterized by
high frequencies of mutations in RUNX1, SRSF2,
IDH2, NRAS and EZH2

• TP53, KRAS, WT1, and SF3B1 mutations
occurred more frequently in cases without
CHIP-associated gene mutations

• Older patients showed a significantly higher
median number of mutations, with age-
dependent mutational profiles for most entities

Conclusion
The data and obtained results indicate a
potentially larger role for CHIP in various
hematological malignancies, characterize the
relationship between DTA mutations and other
mutations in more detail and enlighten the
different mutational landscapes of leukemias and
lymphomas and their interrelation with aging.

Manuscript speed dating – get the gist of a manuscript
in less than 3 minutes

Stengel et al. 2021, Blood Advances, 
https://doi.org/10.1182/bloodadvances.2021004668

Haferlach et al. 2021, Leukemia & Lymphoma
https://doi.org/10.1080/10428194.2021.1953009

The diverse landscape of fusion
transcripts in 25 different hematological
entities

Introduction
Genomic alterations, including structural variants
(SV), are a hallmark of hematological
malignancies. SVs lead to the co-localization of
remote genomic material and, depending on the
breakpoint locations, result either in the generation
of a fusion transcript (breakpoints are located
within two genes) or an aberrant expression of one
gene (breakpoints are located outside of genes,
placing one gene under the influence of the
regulatory sequence of the partner).

Patients & Methods
WTS was performed in 3549 patients diagnosed
with 25 different hematological neoplasms.
Potential fusions were called with Arriba, STAR-
Fusion, and Manta. Only fusion transcripts, called
by at least two callers, not identified in control
samples, validated by WGS and containing at
least one protein-coding gene, were considered.

Results
• 1308 (806 distinct) fusion transcripts were

identified in 932/3549 (26%) patients

• 541/932 (58%) patients harbored a minimum of
one recurrent fusion transcripts

• Myeloid entities, except for CML and AML,
showed low fusion frequencies

• Despite high fusion frequencies in lymphoid
neoplasms, only few fusions occurred
recurrently

• 24/50 (48%) of the recurrent fusions were
specific for one entity

• 1,270 different genes were involved in the 806
fusion transcripts of which the majority (1,189
genes) were solely involved in unique fusions

Conclusion
The entities can be divided into three groups: (1)
malignancies with a high proportion of cases
harboring fusions, (2) entities with a large number
of detected fusions, and (3) BCR-ABL negative
chronic myeloid malignancies with few fusions.

Patients with CHIP 
mutations

Patients without CHIP 
mutations
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Bendig et al. 2021, Leukemia & Lymphoma, 
https://doi.org/10.1080/10428194.2021.1999436

Summerer et al. 2021, Leukemia & Lymphoma, 
https://doi.org/10.1080/10428194.2021.1924372

Diagnostic challenge of identifying cases
with recurrent t(8;14)(q24.21;q32.2)
Involving BCL11B in ALAL: an analysis of
eight patients

Introduction
BCL11B (located at 14q32.2) encodes for a zinc
finger transcription factor that is specifically
expressed in T cells. Aberrant BCL11B expression
can be the result of BCL11B mutations or structural
rearrangements of BCL11B, including inversions
and a recurrent translocation with 5q35 in T-ALL
patients.

Patients & Methods
Genetic characterization of eight cases of acute
leukemia of ambiguous lineage (ALAL) with
rearrangements involving BCL11B and 8q24 as
identified by whole genome sequencing (WGS).

Results
• Patients carrying the t(8;14)(q24.21;q32.2) were

very difficult to detect by chromosome banding
analysis (CBA) only

• A significant BCL11B overexpression was
detected in patients harboring the translocation
t(8;14)(q24.21;q32.2), whereas MYC expression
was comparable to control levels

• All patients with a t(8;14)(q24.21;q32.2)
translocation harbored a FLT3 mutation (6
FLT3-ITD, 2 FLT3-TKD)

Conclusion
The identification of t(8;14)(q24.21;q32.2) in
cytogenetic routine diagnostics is challenging, but
not impossible. The presence of a BCL11B
rearrangement should be considered in ALAL
patients with conspicuous immunophenotype and
FLT3 mutation.

Comprehensive analysis of the genetic
landscape of 21 cases with BPDCN by
whole genome and whole transcriptome
sequencing

Introduction
Blastic plasmacytoid dendritic cell neoplasm
(BPDCN) is a very rare but highly aggressive
hematologic malignancy with poor prognosis, a
limited understanding of its pathogenesis, and no
entity-specific alterations.

Patients & Methods
Genetic profiling of 21 BPDCN cases by whole
genome sequencing (WGS) and whole
transcriptome sequencing (WTS) to reveal patterns
of the molecular pathomechanisms of BPDCN.

Results
• WGS data indicated a complex karyotype in

14/17 (82%) cases

• Deletions of 5q, 9q, 12p, 13q and 15q were
frequently observed in the cohort

• The most frequently detected mutations
occurred in epigenetic or splicing factor genes
(e.g. TET2, ASXL1, SRSF2), followed by
mutations in DNA repair genes

• Unsupervised clustering of the gene expression
profiles segregated the cohort into two distinct
groups that mainly differed in the expression
levels of CD177 and CD11b

• Pathway enrichment analysis revealed an
activation of immune response in the
CD177/CD11b up-regulated group

Conclusion
The multi-level analysis of our study provides a
detailed insight into molecular events underlying
BPDCN and suggests novel treatment approaches
for these patients.

BCL11B expression

FLT3 mutation

t(8;14)(q24.21;q32.2) No translocation
CD177/CD11bhigh CD177/CD11blow

• Increased immune response
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Bendig et al. 2021, Leukemia & Lymphoma, 
https://doi.org/10.1080/10428194.2021.1964021

Baer et al. 2021, Haematologica,
https://doi.org/10.3324/haematol.2021.279807

WGS demonstrates substantial patho-
physiological differences of MYC
rearrangements in patients with PCM and
B-cell lymphoma

Introduction
Chromosomal translocations involving MYC are
seen in various types of hematological
malignancies (especially B-cell neoplasm),
impacting disease progression and overall survival.

Patients & Methods
Whole genome (WGS) and whole transcriptome
sequencing (WTS) were performed in 385 cases
with plasma cell myeloma (PCM), Burkitt
lymphoma (BL), diffuse large B-cell lymphoma
(DLBCL) and high-grade B-cell lymphoma (HGBL).

Results
• For 150/385 (39%) patients a MYCr could be

detected

• MYCr in B-cell lymphoma and PCM differ in
their spectrum of breakpoints, range of partners
and complexity

• 41 MYC mutations were detected in 27 MYCr
cases with a significantly higher frequency in
lymphoma cases compared to PCM

• FISH detected 69% (n = 94) of MYCr cases
identified by WGS

Conclusion
MYCr features of cases with PCM showed distinct
characteristics compared to B-cell lymphoma
cases, resulting in poor MYCr detection rates by
FISH of only 50% in PCM, compared to 94% in
lymphoma.

Detection of ABL1 kinase domain
mutations in therapy naïve BCR-ABL1
positive acute lymphoblastic leukemia

Introduction
Mutations in the ABL1 kinase domain are the main
mechanism of resistance to tyrosine kinase
inhibitors (TKI) in Philadelphia-positive (Ph+)
leukemia. In acute lymphoblastic leukemia (ALL), a
very early acquisition of mutations can be
observed, which may even exist before TKI therapy
is applied. However, ABL1 mutation screening is not
a standard procedure at initial diagnosis.

Patients & Methods
Resistance mutation screening of 91 BCR-ABL1
positive ALL patients by NGS before TKI treatment
and with a molecular follow-up of at least six
month (n = 35).

Results
• Detection of known ABL1 kinase domain

mutations in 5/91 (5.5%) patients at initial
diagnosis but no difference in outcome was
observed

• Longitudinal mutation testing detected one or
more known resistance mutation in 15/19 (79%)
Ph+ ALL cases with relapse

Conclusion
The majority (93%, 14/15) of mutations found in Ph+

ALL cases with relapse were most likely acquired
under the selective pressure of (TKI-) treatment and
were not present in therapy naïve patients.
Therefore, testing at initial diagnosis should only
be considered in addition to established mutation
testing in refractory/relapsed disease.
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A potpourri of research and opinions – the prosperous work 
of our guest scientists in 2021

Indeterminate and oncogenic potential: CHIP vs CHOP
mutations in AML with NPM1 alteration

Patients & Methods: Analysis of the mutational profile of 150
consecutive patients (pts) with NPM1 mutated AML at diagnosis,
complete molecular remission (CMR) and relapse by NGS.

Results: In addition to NPM1, 301 mutations were detected across all
150 pts at diagnosis. At CMR, 69/150 pts carried at least one mutation
and 27% of the pts had persisting DTA (DNMT3A, TET2, ASXL1) mu-
tations. Patients with persisting non-DTA mutations at CMR had a sig-
nificantly worse EFS and OS. Three clonal evolution pattern emerged:
mutations mainly lost at CMR/relapse, persistent mutations at CMR/
relapse (CHIP-like) and mutations gained at CMR/relapse (CHOP-like),
which are also an adverse prognostic factor in NPM1mut AML.

Cappelli et al. 2021, Leukemia, https://doi.org/10.1038/s41375-021-01368-1
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Maturation State-Specific Alternative Splicing in FLT3-ITD and
NPM1 Mutated AML

Patients & Methods: Exploration of differential splicing profiles of 382
primary AML samples with FLT3-ITD and NPM1 mutations by WTS.

Results: The co-occurrence of FLT3-ITD and NPM1 mutations is asso-
ciated with differential splicing of FAB-type specific gene sets but is also
characterized by a maturation state independent perturbation of cell
cycle control and DNA damage response, albeit involving different
genes. Differentially expressed genes in FLT3-ITD+/NPM1+ samples were
also FAB-type dependent and included mostly regulators of hema-
topoietic differentiation. Indicating that differential expression and
splicing complement each other in regulating two important aspects of
oncogenesis: uncontrolled proliferation & impaired differentiation.

Wojtuszkiewicz et al. 2021, Cancers, https://doi.org/10.3390/cancers13163929

A) exon skipping
B) mutually exclusive exons
C) retained intron
…
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B)

C)

…

Loss of PALB2 predicts poor prognosis in AML and suggests
novel therapeutic strategies targeting the DNA repair pathway

Patients & Methods: Analysis of single-nucleotide polymorphism arrays
and whole-exome sequencing data from various data sources to study
the genomic alterations of PALB2 in AML.

Results: A partial deletion of PALB2 (mainly exons 11 & 12) was detected
in ~5% of the patients and was associated with the loss of genomic
regions frequently altered in poor-prognosis AML, including chromo-
somes 5q and 17p13. Patients with a partial PALB2 deletion frequently
harbored TP53 mutations, were older than wild-type cases and were
characterized by a poor prognosis, independent of other negative
prognostic factors.

Padella et al. 2021, Blood Cancer Journal, https://doi.org/10.1038/s41408-020-00396-x
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The rise of artificial intelligence in routine 

diagnostics at MLL
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Artificial intelligence is about to make itself indispensable 
in hematology in the near future

Artificial intelligence (AI) is a term that is hard to escape these days. AI-based methods have revolutionized
many aspects of everyday life. One of the most recent applications of AI-powered technology? The semi-
automated offside system in soccer, which will be tested during the Arab Cup in the coming weeks. The
tremendous success of AI-based methods, especially for image analysis, attracted a lot of attention in
recent years. At last, AI is beginning to deliver on the promise of omnipotence made in the 1960s and 1970s
when the first AI research was conducted. However, at that time, the high expectations could not be met. So
what has changed? Huge increases in computing power have enabled faster training and evaluation cycles,
allowing for efficient and accelerated tuning of hyper parameters. In addition, the availability of large,
digitized data collections provides the necessary basis to comprehensively train a model.

Cytomorphology
In cytomorphology the
correctness of the obtained
results depends primarily on the
experience and capabilities of
the personnel to accurately
detect and classify aberrant
cells. But intra- and inter-
observer reproducibility is lower
than we would like and, hence,
an automated pre-processing
and evaluation of the
microscopic images could
benefit the reproducibility of
results and would allow the
hematologists to focus on edge
cases that do not fit the
standard pattern, reducing the
overall workload. How we did it?
Take a look at the next page.

Immunophenotyping
Besides cytomorphology, multi-
parameter flow cytometry is
the central method for the
diagnosis of leukemias and
lymphomas. Here, the results
also depend heavily on the
expertise and knowledge of the
person performing the evalua-
tion, with inherent inter-
observer variability. Thus, to
reduce the dependency on
expert knowledge and to
increase reproducibility of data
interpretation we implemented
an automated procedure, that
uses an ML-based algorithm to
classify various neoplasms.
Don’t believe it? Then take a
look at page 28.

Cytogenetics
Cytogenetics provides diag-
nostic and prognostic infor-
mation retrieved from the
classification of chromosomes
by size and banding as
displayed in a karyogram.
However, karyotyping is a very
time-consuming and complex
task. Multiple attempts have
been made to develop (semi-)
automatic analysis systems but
embedding a ML-based
classification system in a
routine diagnostic workflow? It
hasn't been done that often
before, but we have. Let's take
a look behind the scenes of the
cytogenetics department at the
MLL (p.27).

Walter et al. 2021, Oncogene,
https://doi.org/10.1038/s41388-021-01861-y

AI intents to mimic human
intelligence and decision making,
efficiently reflecting human
behavior.

ML algorithms classify data
based on knowledge gained from
patterns and their statistical
representation.

DL models are based on artificial
neural networks to learn repre-
sentations of data by multiple
levels of abstraction.

Artificial intelligence (AI) Machine Learning (ML) Deep Learning (DL)

In health care, medical image classification has benefitted the most from the introduction of ML methods so
far. Hence, within the last year, we have implemented different ML-based methods at the MLL to
successfully support decision-making in cytomorphology, cytogenetics, and immunophenotyping:
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For more than a century, the diagnosis of
hematologic neoplasms has relied primarily on the
results of cytomorphology, which provides an initial
diagnosis and guides other diagnostic methods such
as cytogenetics, immunophenotyping or molecular
genetics to substantiate the result. However, the
correctness of the obtained cytomorphologic results
depends largely on the experience and capabilities
of the personnel, and even among experienced and
skilled hematopathologist, inter-/intra-observer-
reproducibility is only 75 to 90%. In addition,
manual evaluation can be rather tedious and time-
consuming, limiting the number of cells that can be
processed per sample and the sample throughput in
general. In the last 5 years, the number of samples
sent to the MLL has increased by almost 40%, and
so has the workload of our hematopathologists.
Fortunately, due to the advances in digital
microscopic imaging and machine learning
technologies, automated image processing and
classification have become feasible. In order to
streamline and standardize the process of
peripheral blood cell differentiation, we set up a
workflow to automatically record and digitalize
microscopic images of blood-smears. In addition,
we took advantage of our large collection of well
annotated and digitalized single cell images of
blood-smears to train an ML model to identify 21
predefined classes. The classes reflect different cell
types and maturation states (Fig.1), including one
garbage class for images that could not be assigned
unequivocally to either one of the classes by the
model.

Automated peripheral blood cell differentiation using
artificial intelligence

Afterwards, single cell images (144x144px) are
generated by a high resolution scan in 40x and fed
into the supervised ML model to produce class
probability scores for each image/cell (Fig. 2). The
ML model is based on ImageNet-pretrained
Xception using Amazon Sagemaker.

Figure 1: The 21 predefined classes for image classification and their
grouping regarding diagnostic value.

In a first interim analysis, 10,082 patient samples,
sent to the lab between January and July 2021
with a suspected hematologic neoplasm, were
classified. In routine diagnostics, for each sample
~100 cells are analyzed to keep a healthy balance
between evaluation time and diagnostic accuracy.
The automated workflow has a significant speed
advantage, allowing the assessment of ~500 cells
per sample in a comparable time frame (on
average 4:37 min per sample). Comparing the
results for cell differentiation between humans and
the ML model revealed a high consensus (see
below).

52% Segmented Neutrophils 53%

2.25% Eosinophils 3.36%

0.72% Basophils 0.72%

7.5% Monocytes 6.64%

31.7% Lymphocytes 24%

0.97 % Pathogenic blasts 1.65%

The performance of the application in comparison to
routine diagnostics is currently evaluated in our
prospective clinical trial BELUGA (Better Leukemia
Diagnostics Through AI; ClinicalTrial.gov Identifier:
NCT04466059. The blood-smears are scanned at
10x magnification to define areas of interest and
leukocyte position.

Taking a closer look at the results for pathogenic
cases, routine diagnostics identified 536 samples
with blast cells and 2,323 samples with at least one
atypical/malignant lymphocyte, of which the ML
model identified 493 (91%) and 2.279 (98%) cases,
respectively. The next step will be to transfer the
knowledge to microscopic images from bone mar-
row samples – take a look at the next page.

Figure 2: Pictographic display of the AI-supported diagnostic workflow.
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A glimpse at what‘s coming next: AI-based differentiation
of bone marrow cell morphologies

As demonstrated on the previous page, the auto-
mated cell differentiation from peripheral blood
smears works quite well and the method is currently
tested in parallel to routine diagnostics in a pro-
spective study. However, in addition to peripheral
blood we also receive bone marrow samples be-
cause for some hematological malignancies only
bone marrow samples are informative for an accu-
rate and comprehensive diagnosis. By comparing
Fig. 1A and Fig. 1B the challenge is immediately
obvious: the cell density is significantly higher in
bone marrow smears compared to peripheral blood,
hampering the detection of single cells.

Figure 1: Exemplary digital microscopic images for A) peripheral blood
smear, B) bone marrow smear, C) manual cell labeling (green rectangles),
D) automated object (= cell, red rectangles) recognition supported by AI.

Therefore, a pre-screening of the microscopic image
is necessary to identify areas of high quality and
single cell resolution. Next, specialized software
systems are applied to automatically locate the
single cells in the respective image and to highlight
them by drawing a quadratic region around each
cell. The last part is only intended to facilitate
manual correction and comparison and doesn’t
serve any diagnostic purpose. As can be seen in Fig.
1D, the automated detection of cells is already
comparable to the manual labeling (Fig. 1C).
However, it’s also obvious that a quadratic frame
around a circular object in a crowded space will
almost always introduce some noise. Hence, we are
currently evaluating, if a more accurate labeling of
the cells, i.e. highlighting the exact borders of a cell
(Fig. 2), rather than simply framing a cell, can
reduce background noise to further increase classi-
fication accuracy.

Matek et al. 2021, Blood,
https://doi.org/10.1182/blood.2020010568

Haferlach et al. 2021, Blood,
https://doi.org/10.3324/haematol.2021.279807

Figure 2: The process of manually outlining the different cells of a digitized
microscopic image.

In a joint effort, a dataset of 171,374 expert-
annotated single-cell images from 945 patients
diagnosed with a variety of hematological neo-
plasms was used to train a convolutional neural
network (CNN) for the classification of bone
marrow morphologies. The dataset was further
extended by images displaying artefacts, cells that
could not be identified, and cell types that were
not part of the classification, to avoid biasing the
annotation and to improve robustness and gener-
alizability. The images were centered on the
annotated cell but it was left to the algorithm to
detect the main image content without any ad-
ditional processing of the images. The images were
fed into a ResNeXt-50 model and the highest pre-
diction probability yielded the class per image. As
expected, the results per class improved with an
increase of available training data and maturation
states closely related in the leukocyte differen-
tiation were often misclassified (Fig. 3). However,
some of the misclassifications can be considered
tolerable, i.e. the confusion between segmented
and band neutrophils, and, hence, tolerance
classes were used to account for this uncertainty.

A detailed analysis of the network’s classification
decisions showed that the algorithm had learned
to differentiate between the relevant input and
background noise to focus on the leukocyte for the
class prediction. A visual display of the extracted
features confirmed the clear separation of the
classes and reflected the continuous transition
between the classes. The results of the two studies
show, that AI-supported cell differentiation is
feasible, independent of the sample material.

A) B) C) D)

To get one step closer to the automated analysis of
bone marrow smears, we teamed up with the
Institute of AI for Health (Helmholtz Munich) to
analyze the largest available expert-annotated pool
of bone marrow cytology images.

Figure 3: Confusion matrix of the predictions obtained by the ResNeXt
classifier on the test database annotated by gold standard labels
provided by human experts. Image taken from Matek et al. 2021
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AI substantially supports chromosome banding analysis in 
hematologic diagnostics

Chromosome banding analysis (CBA) is the current
gold standard to identify cytogenetic abnormalities
that allow patient stratification for prognostic
prediction in hematological malignancies. Patient-
specific information is derived from the classification
of chromosomes by size and banding, as displayed
in a karyogram. However, the generation of a karyo-
gram is a very time-consuming and complex process
in which viable cells are cultured and arrested in the
metaphase stage of cell division before the fixed cell
suspension is dropped on the slides to perform
chromosome banding and staining. Metaphases are
then captured, chromosomes separated and karyo-
typing is performed (Fig. 1). Here, the banding pat-
tern of the chromosomes is essential for highlighting
diagnostically important details and distinguishing
between normal and aberrant chromosomes.

Figure 1: Simplified pictographic overview of the chromosome banding
analysis workflow.

CBA also plays an important role for therapy selec-
tion and short turn-around times are desirable for
rapid, safe and efficient treatment. In recent years,
an increase in the degree of automation for the wet
lab processes could be observed with the develop-
ment of robots that handle every step of the
workflow. But karyotyping is also a very complex
and time-consuming task that would benefit from
automated processing. Despite noticeable progress,
many challenges in automatic karyotyping haven’t
yet been fully resolved. First, the identification and
separation of individual chromosomes. As of Feb
2021, our routine CBA workflow includes automatic
chromosome separation based on object recogni-
tion instead of contrast differences, reducing the
need for manual intervention. It follows the classify-
cation of the individual chromosomes by assigning
them to their respective position in the karyogram.
To automate the procedure, we build an AI-based
classifier for normal chromosomes. 100,000
manually arranged karyograms with normal
karyotype were taken from our digital archive to
train a deep neural network (DNN) that determines
1) chromosome class and 2) chromosome orienta-
tion. The initial DNN training took 16 days on a
Nvidia RTX 2080 Ti graphic card with 4352 cores.

The model was subsequently validated on an inde-
pendent set of 500 karyograms with normal
karyotype, resulting in a classification agreement
of 98.6% between the human experts and the DNN
on a per chromosome basis (Fig. 2).

For complete karyograms, a higher discrepancy
was detected. An evaluation of the results
revealed, that the majority of misclassifications
involved chromosomes very similar in size, shape,
and appearance (chr 4 & chr 5; chr 14 & chr 15),
which are also challenging to classify for humans,
if chromosome quality is suboptimal. After the
introduction of the first AI-based model, the
number of cases reported <5 days increased
compared to the manual workflow. Since July
2021, it’s possible to classify all recorded meta-
phases per patient at once, further increasing the
number of cases reported within 7 days (Fig 3.).

Figure 4: Section from a karyogram showing the color-coded class pro-
bability depicted beneath each chromosome: green 100%, yellowish
50%, and red close to 0% .

Figure 2: Depiction of the results from the model evaluation.

Most of the presented results are for normal karyo-
types but the algorithm works also quite well for
aberrant karyotypes. Here, numerical aberrations
are easier to handle compared to structural
aberrations because they involve normal chromo-
somes and the method could be easily extended
for this task. Structural abnormalities are more
challenging, mainly because the available training
data is limited and not easily expandable.
However, derivative chromosomes that are
different from any normal chromosome are left out
for manual classification, saving also time for
cases with abnormal karyotype. Thus, step by
step, we are getting closer to fully automate
karyotyping.

The current version of the AI-supported karyo-
typing also reports the probability of the class
prediction, facilitating manual verification (Fig. 4).

Figure 3: Comparison of turn-around time between the AI-supported and
the manual workflow.
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Automated diagnostics of hematologic neoplasms by AI-
based models using flow cytometric data

Multiparameter flow cytometry (MFC, immuno-
phenotyping) is an integral part of routine diag-
nostics for hematologic malignancies. Due to the
high dimensionality of the data, computational
assistance is indispensable for the evaluation of MFC
data because it’s basically impossible for humans to
draw any conclusion from the raw files generated by
the cytometer. However, the provided software
usually performs only relatively simple data
processing and visualization tasks to facilitate data
analysis for human experts. Quality management
systems have been implemented worldwide to
standardize the wet-lab processes such as sample
preparation and measurement, but data analysis
and interpretation are still the responsibility of
humans, completely relying on expert knowledge
applied individually to each patient sample. To
reduce the dependency on expert knowledge and to
potentially increase consistency of data inter-
pretation, the implementation of automated
processes is desirable (Fig. 1).

Bellos et al. 2021, Blood,
https://doi.org/10.1182/blood-2021-150697

Zhao et al. 2020, Cytometry,
https://doi.org/10.1002/cyto.a.24159

Our first approach to apply an AI-based model to
solve a multiclass MFC problem with expert ac-
curacy was conducted in collaboration with the
university of Bonn. Here, the flow cytometric data
was transformed into self organizing maps (SOM,
Fig. 2) to allow an image analysis in 2D. The SOMs
were then used to train a convolutional neural
network to automatically classify seven B-cell non
Hodgkin lymphoma (B-NHL) subtypes (e.g. chronic
lymphocytic leukemia, follicular lymphoma, mantle
cell lymphoma) and healthy individuals.

Figure 1: Simplified overview of the MFC workflow.

MFC for the diagnosis
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lymphomas

Automation desirable

ReportData analysis & 
interpretation

Sample Standardized
workflow
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SOM 32x32

Figure 2: Exemplary SOMs for the visualization of various markers.

The model was able to reliably distinguish between
B-NHL and healthy individuals with an average F1
score of 0.98 (max value = 1). B-NHL subtype
classification yielded a weighted F1 score of 0.94
and a detailed analysis of the predictions showed
that misclassifications occurred more often between
clinically similar subtypes due to the close resem-
blance of their flow cytometric profiles.

Although the first attempt at subtype classification
worked reasonably well, the preceding image
transformation has the potential disadvantage of
data reduction. Hence, in a second attempt, we
relied on the raw data from MFC for the classifi-
cation of main entities of hematologic malignancies
to take full advantage of the complex data.
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1,073 no NHL
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Figure 3: Overview of the used dataset.

In total 36,662 cases were used to train six ML-
based models: one model per disease subtype (Fig.
3). The data was standardized, transformed and
rescaled and feature engineering techniques were
applied for each model to extract the most relevant
features per entity. In addition, expert-based fea-
tures, including focusing on cell populations of
interest by applying clustering techniques, deter-
mining the marker distribution for subpopulations
and calculating covariance between key markers,
were applied for certain subtypes.

Figure 4: Performance of the different models for subtype classification.
The size of the bubbles is proportional to the number of included cases.

The average recall values for the different models
ranged from 84% to 99.8%, considering only cases
with prediction probabilities above certain thresh-
olds (Fig. 4). Thus, relying on raw MFC data to
train AI models is feasible and leads to promising
classification results, paving the way for imple-
menting the models in routine diagnostic settings.
We anticipate that the trained models will
substitute up to 75% of routine MFC data analysis
in the future. Our next steps will focus on the
identification of additional entities, the application
of transfer learning to achieve universal appli-
cability, and the extension of the models to detect
also measurable residual disease patterns.
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Nazha et al. 2021, Journal of Clinical Oncology,
https://doi.org/10.1200/JCO.20.02810

Not quite there yet, but on the right track: AI-based models
in clinical molecular genetics

The previous pages have shown the enormous potential for implementing AI-based models to support
diagnostics in hematology, with the exception of one prominent field: molecular genetics. As mentioned
before, the recent success of AI-based models in diagnostics is mainly based on the availability of
significantly improved image recognition algorithms, powered by tech giants such as Google, Amazon and
Meta. However, data from molecular genetics, especially NGS, are usually not in the form of images, limiting
the application of image classification software. Molecular genetic data matrices, such as mutation profiles,
are also very sparse because each patient harbors only a small number of mutations, making it difficult for
an algorithm to identify the relevant features. In addition, analyzed gene panels are often inconsistent
among patients, depending on the suspected diagnosis and associated genes, as well as the institute/
laboratory that performs the sequencing. In contrast to the other fields in hematology, that implement AI-
based models to mimic human behavior, clinical molecular genetics intents to apply AI-supported models
within precision medicine workflows to perform tasks that are impractical to do for humans, i.e. risk
stratifying patients based on multiple factors, such as clinical variables and gene mutations (Fig. 1).

Radakovich et al. 2021, Blood Advances, 
https://doi.org/10.1182/bloodadvances.2021004755

Figure 1: Pictographic overview of the general concept of precision medicine.

Recently, two attempts were made to improve risk
stratification of MDS patients by applying ML
techniques for which a large MLL data collection
contributed significantly to the training of these
models. Nazha et al. focused on the analysis of 1,471
MDS patients to build a personalized prediction
model that can provide survival (OS) and leukemia
transformation probabilities at different stages of a
patient’s disease course. Accurate outcome pre-
dictions and identification of relevant factors can
help physicians determine appropriate therapies.
The analysis was based on the mutation status of 24
genes with established clinical impact in MDS that
were mutated in at least 30 patients in the cohort,
cytogenetic information, as well as various clinical
variables such as bone marrow blast count,
hemoglobin, and platelets. Interestingly, the number
of mutations per patient was an independent
prognostic factor for OS and leukemia trans-
formation. The final model outperformed the estab-
lished risk scores (IPSS and IPSS-R) even when muta-
tions were added to the scoring systems (Fig. 2).
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Figure 2: The concordance index of the new model compared with that of
IPSS and IPSS-R for (A) OS and (B) leukemia transformation in the
training and validation cohorts. Adapted from Nazha et al.
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Radakovich et al. developed a machine learning
model for the diagnosis of myeloid malignancies
independent of bone marrow biopsy data. 15
genomic/clinical variables (selected due to their
importance for the prediction) were included in the
final model to distinguish between MDS and other
conditions (Fig. 3).
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Figure 3: Global model feature importance. The larger the Shapley
(SHAP) value, the greater the impact of the variable on the output. PB:
peripheral blood. Adapted from Radakovich et al.

The model generated highly accurate predictions
in the validation cohort with a AUROC (Area Under
the Receiver Operating Characteristic curve) value
of 0.93 (values > 0.9 are considered excellent).
Although the results of these studies are not
universally applicable, they still demonstrate the
potential value of ML-based models for disease
classification and risk stratification.
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Outlook and future collaborations
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Combining forces for the development of innovative methods and
approaches to advance patient care

The rocky path towards precision medicine

Various assays and diagnostic methods have been
developed to address the clinical challenges of
delivering a rapid and accurate diagnosis for each
cancer patient. However, to date, clinical practice has
mainly focused on the one-genetic-alteration-one-
drug approach and population averages, ignoring the
unique characteristics and needs of the individual
patient. Further technological and algorithmic
improvements and the increase in knowledge through
various large-scale molecular studies will lead to more
personalized models that allow a tailored treatment
and improved risk assessment for each patient.
Furthermore, it is indispensable to increase the
diversity of research participants to ensure that
personalized treatments or prevention strategies are
available to all.

One of the key elements in
shortening the process for
developing new drugs or
treatment approaches and
creating comprehensive disease
models is the collection and
harmonization of high-quality
data on the outcomes of
existing treatments. However,
the collection of real world data
is often hampered by lack of
data as well as variations in
health care practice. The
Harmony alliance is a European
network of excellence made up
of >80 organizations to collect
data on as many patients with
blood cancer as possible. The
data is brought together and
harmonized on one large
platform.

The project aims to improve
diagnostics and treatment for
MDS by characterizing changes
in cellular heterogeneity and
identifying early disease cells
through the analysis of multi-
omics data. Unraveling the
regulatory mechanisms that
determine cell-to-cell hetero-
geneity will be essential to
identify key regulators (e.g.
epigenetic modifiers) as
potential points of intervention.
For our PhD student the work
will start with a detailed
analysis of in-house WGS &
WTS data from MDS samples to
generate hypotheses that will
subsequently be tested and
expanded by single-cell
analysis.

As described on the previous
pages, we are very interested in
adopting AI-based methods to
further improve diagnostics for
the benefit of our patients.
However, the high complexity of
AI-based methods is both a
curse and a blessing, because
on the one hand it enables
significant performance im-
provements, but on the other
hand it limits the interpret-
ability of the model, which
leads to uncertainties about
how they work. Therefore, we
were happy to join
GenoMed4All, which aims to
provide reliable, interpretable,
and trustworthy AI-services for
clinical support in various
hematological diseases.

To get one step closer to the final goal of personalized medicine, we will further expand our network of
fruitful collaborations. It is particularly worth mentioning that for the first time we will be participating in
two innovative training networks (ITN) as part of Horizon 2020, the biggest EU Research and Innovation
program.

INTERCEPT-MDSGenoMed4All

https://www.harmony-alliance.eu/ https://genomed4all.eu/ https://intercept-mds.eu/
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Outlook

Speculating about the future is always a risky exercise, especially since as scientist we normally deal with
facts and not opinions. However, the past can always serve as a guide for future actions. Looking back on
2021, we close a successful scientific year that already paves the way for the extended application of new
diagnostic technologies and methodologies in 2022.

Recent publications and the initiation of large-scale sequencing studies all around the world demonstrate
the increasing scientific and clinical value of comprehensive genomic assays such as WGS and WTS. As
demonstrated by Duncavage and colleagues, WGS provides a greater diagnostic yield than conventional
cytogenetics and rapid and accurate genomic profiling for patients with AML or MDS (Duncavage et al.
2021, PMID: 33704937). Our own results of a comprehensive comparison for patients with ALL and AML
between the results of gold standard techniques and WGS support the these conclusions. In addition, we
could show that the use of WTS for patients with ALL provides additional diagnostic and prognostic
information. Therefore, we are very supportive of this comprehensive approach and will focus our efforts
next year on the gain of clinical information by a hematologic WGS/WTS for AML and ALL patients.

The new WHO is in progress and suggests that genetics, and in particular molecular genetics, will gain
importance for classification, which has to be demonstrated and supported in routine settings. Here, too, we
are keen to make our contribution.

Of course, we hope to welcome guest scientists again in the new year, which is already assured by our
participation in various international research projects. Within the projects, we are looking forward to
welcoming scientists at the MLL and to expand our biological and clinical knowledge about the different
leukemias and lymphomas but also our technical knowhow by the optimization and implementation of new
AI-based models. It’s always our goal to provide state-of-the-art diagnostics and therefore we will also
expand our NGS portfolio by establishing new assays and techniques, such as single cell sequencing.

We remain curious and motivated to further advance science in the field of hematologic neoplasms in the
coming year.

“Anyone who lives within their means suffers from a lack of imagination.” 
– Oscar Wilde
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